Langsung ke konten utama

PLANE GEOMETRY



PLANE GEOMETRY
Theorems, axioms, definitions
Proof. Theorem. Axiom. Initial notions. Definitions.
Proof – a reasoning, determining some property.
Theorem – a statement, determining some property and requiring a proof. Theorems are called also as lemmas, properties, consequences, rules, criteria, propositions, statements. Proving a theorem, we are based on the earlier determined properties; some of them are also theorems. But some properties are considered in geometry as main ones and are adopted without a proof.
Axiom – a statement, determining some property and adopted without a proof. Axioms have been arisen by experience and the experience checks if they are true in totality. It is possible to build a set of axioms by different ways. But it is important that the adopted set of axioms would be sufficient to prove all other geometrical properties and minimal. Changing one axiom in this set by another we must prove the replaced axiom, because now it is not an axiom, but a theorem.
Initial notions. There are some notions in geometry  ( and in mathematics in general ), to which it is impossible to give some sensible definition. We adopt them as initial notions. The meaning of these notions can be ascertained only by experience. So, the notions of a point and a straight line are initial. Basing on initial notions we can give definitions to all other notions.


Straight line, ray, segment

In your thought you can continue a straight line infinitely in both directions.We consider a straight line as infinite. A straight line, limited from one side and infinite from another side, is called a ray. A part of a straight line, limited from both sides, is called a segment.


Angles
Angle. Degree and radian measures of an angle.
Right (direct), acute and obtuse angle. Mutually
perpendicular straight lines. Signs of angles.
Supplementary (adjacent) angles. Vertically
opposite (vertical) angles. Bisector of an angle.
Angle is a geometric figure  ( Fig.1 ),  formed by two rays  OA  and  OB ( sides of an angle ), going out of the same point  O  (a vertex of an angle).
An angle is signed by the symbol  and three letters, marking ends of rays and a vertex of an angle: http://www.bymath.com/studyguide/angle.gif AOB (moreover, a vertex letter is placed in the middle). A measure of an angle is a value of a turn around a vertex O, that transfers a ray OA  to the position OB. Two units of angles measures are widely used: a radian and a degree. About a radian measure see below in the point "A length of arc" and also in the section "Trigonometry".
A degree measure. Here a unit of measurement is a degree ( its designation is ° or  deg ) a turn of a ray by the 1/360 part of the one complete revolution. So, the complete revolution of a ray is equal to 360 deg. One degree is divided by 60 minutes  ( a designation is ‘ or  min ); one minute – correspondingly by  60 seconds  ( a designation is “ or  sec ).An angle of  90 deg  ( Fig.2 ) is called a right or direct angle; an angle lesser than  90 deg  ( Fig.3 ), is called an acuteangle; an angle greater than  90 deg  ( Fig.4 ), is called an obtuse angle. 
http://www.bymath.com/studyguide/geo/sec/geo3b.gif
Straight lines, forming a right angle, are called  mutually  perpendicular lines. If  the straight lines AB and MK are perpendicular, this is signed as: AB http://www.bymath.com/studyguide/prpnd.gifMK.
Signs of angles. An angle is considered as positive, if a rotation is executed opposite a clockwise , and negative – otherwise. For example, if the ray OA displaces to the ray OB as shown on  Fig.2, then  http://www.bymath.com/studyguide/angle.gifAOB = + 90 deg; but on Fig.5 http://www.bymath.com/studyguide/angle.gifAOB = – 90 deg.
 

Supplementary (adjacent) angles ( Fig.6 ) – angles AOB and COB, having the common vertex O and the common side OB; other two sides OA and OC form a continuation one to another. So, a sum of supplementary (adjacent) angles is equal to 180 deg.
Vertically opposite (vertical) angles  ( Fig.7) – such two angles with a common vertex, that sides of one angle are continuations of the other:http://www.bymath.com/studyguide/angle.gif AOB and http://www.bymath.com/studyguide/angle.gif COD ( and also http://www.bymath.com/studyguide/angle.gifAOC and http://www.bymath.com/studyguide/angle.gifDOB )  are vertical angles.
 
 







A bisector of an angle is a ray, dividing the angle in two ( Fig.8 ). Bisectors of vertical angles (OM and ON, Fig.9) are continuations one of the other. Bisectors of supplementary angles (OM and ON, Fig.10) are mutually perpendicular lines. 
 

The property of an angle bisector:any point of an angle bisector is placed by the same distance from the angle sides.
 

Komentar

Postingan populer dari blog ini

KLIMATOLOGI HUTAN (SUHU MEMPENGARUHI HUTAN DAN VEGETASI)

BAB 1 PENDAHULUAN 1.1   Latar Belakang Hutan yang tumbuh dan berkembang, tidak terlepas dari faktor-faktor yang mempengaruhinya, terutama lingkungan. Di permukaan bumi kurang lebih terdapat 90% biomassa yang terdapat di dalam hutan dalam bentuk pokok kayu, dahan, daun, akar dan seresah, hewan dan jasad renik. Biomassa ini adalah dari hasil fotosintesis, yang berupa sellulose, lignin, gula bersama dengan lemak, protein, damar fenol dan berbagai senyawa lainnya. Berdasarkan hukum alam, biomassa ini dimanfaatkan oleh hewan herbivora, serangga dan jasad renik yang membutuhkan oksigen dan melepaskannya lagi dalam bentuk karbon dioksida dan karbon dioksida ini dimanfaatkan kembali oleh tumbuhan. Karena kebutuhan manusia maka hukum alam tersebut diubah, hutan dirusak dan dialihkan menjadi penggunaan yang lain. Adapun kesatuan dari lingkungan adalah abiotik, yang terdiri dari cahaya, suhu, tanah, air, udara, zat kimia dan benda mati lainnya, yang mampu menghidupkan organism...

Dasar Dasar Pendidikan Matematika (Keterampilan Proses)

BAB I   PENDAHULUAN 1.1   Latar Belakang Menurut Diknas dalam Muhsan (2004 : 3 ) anak akan belajar lebih baik jika lingkungan diciptakan alami. Belajar akan lebih baik dan bermakna jika anak akan mengalami dari apa yang dipelajarinya, bukan sekedar mengetahuinya. Pembelajaran yang berorientasi pada target penguasaan materi terbutki berhasil dalam kompetensi menginta jangka pendek, tetapi gagal dalam membekali anak memecahkan persoalan dalam kehidupan jangka panjang.   Dengan demikian, hasil belajar yang bermakna adalah jika anak dapat menggunakan apa yang telah dipelajari dengan bebas dan penuh kepercayaan dalam berbagai situasi dan kondisi dalam hidupnya. Hasil belajar tersebut juga benar-benar mengandung arti bagi kehidupan siswa itu sendiri. Pembelajaran dengan pendekatan keterampilan proses bukan semata-mata untuk mentransformasikan pengetahuan kepada siswa, tetapi apakah siswa benar-benar belajar atau tidak.  Dalam kondisi seperti ini maka guru d...